Investigating the Prediction of Breast Cancer Diagnosis by Use of Support Vector Machines

نویسندگان

چکیده

This study examines the use of support vector machine (SVM) learning algorithms in predictive analytics models for detection breast cancer. uses cancer Wisconsin dataset and evaluates model's performance using measures including accuracy, F1-score, precision, recall. Comparisons are made between SVM those alternative classification techniques logistic regression, decision trees, random forests. The findings demonstrate usefulness utilising models, notably algorithm, model demonstrated significant effectiveness making it a viable choice tool clinicians early identification diagnosis

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction model building and feature selection with support vector machines in breast cancer diagnosis

Breast cancer is a serious problem for the young women of Taiwan. Some medical researches have proved that DNA viruses are one of the high-risk factors closely related to human cancers. Five DNA viruses are studied in this research: specific types of HSV-1 (herpes simplex virus type 1), EBV (Epstein-Barr virus), CMV (cytomegalovirus), HPV (human papillomavirus), and HHV-8 (human herpesvirus-8)....

متن کامل

Gene Extraction for Cancer Diagnosis by Support Vector Machines

OBJECTIVE To improve the performance of gene extraction for cancer diagnosis by recursive feature elimination with support vector machines (RFE-SVMs): A cancer diagnosis by using the DNA microarray data faces many challenges the most serious one being the presence of thousands of genes and only several dozens (at the best) of patient's samples. Thus, making any kind of classification in high-di...

متن کامل

the study of aaag repeat polymorphism in promoter of errg gene and its association with the risk of breast cancer in isfahan region

چکیده: سرطان پستان دومین عامل مرگ مرتبط با سرطان در خانم ها است. از آنجا که سرطان پستان یک تومور وابسته به هورمون است، می تواند توسط وضعیت هورمون های استروئیدی شامل استروژن و پروژسترون تنظیم شود. استروژن نقش مهمی در توسعه و پیشرفت سرطان پستان ایفا می کند و تاثیر خود را روی بیان ژن های هدف از طریق گیرنده های استروژن اعمال می کند. اما گروه دیگری از گیرنده های هسته ای به نام گیرنده های مرتبط به ا...

15 صفحه اول

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Healthcare Information Systems and Informatics

سال: 2023

ISSN: ['1555-3396', '1555-340X']

DOI: https://doi.org/10.4018/ijhisi.325219